AI Tasks MCP Server
A task management system with Model Context Protocol (MCP) implementation for seamless integration with agentic AI tools. Enables AI agents to create, manage, and track tasks in plans using Valkey as the persistence layer.
A task management system with Model Context Protocol (MCP) implementation for seamless integration with agentic AI tools. Enables AI agents to create, manage, and track tasks in plans using Valkey as the persistence layer.
Installation
Docker (SSE)
docker run -d --name valkey-mcp \
-p 8080:8080 \
-p 6379:6379 \
-v valkey-data:/data \
-e ENABLE_SSE=true \
ghcr.io/jbrinkman/valkey-ai-tasks:latest
Docker (Streamable HTTP)
docker run -d --name valkey-mcp \
-p 8080:8080 \
-p 6379:6379 \
-v valkey-data:/data \
-e ENABLE_STREAMABLE_HTTP=true \
ghcr.io/jbrinkman/valkey-ai-tasks:latest
Docker (STDIO)
docker run -i --rm --name valkey-mcp \
-v valkey-data:/data \
-e ENABLE_STDIO=true \
ghcr.io/jbrinkman/valkey-ai-tasks:latest
Docker Pull
docker pull ghcr.io/jbrinkman/valkey-ai-tasks:latest
Create Volume
docker volume create valkey-data
Configuration
SSE Transport
{
"mcpServers": {
"valkey-tasks": {
"serverUrl": "http://localhost:8080/sse"
}
}
}
Streamable HTTP Transport
{
"mcpServers": {
"valkey-tasks": {
"serverUrl": "http://localhost:8080/mcp"
}
}
}
STDIO Transport
{
"mcpServers": {
"valkey-tasks": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-v", "valkey-data:/data"
"-e", "ENABLE_STDIO=true",
"ghcr.io/jbrinkman/valkey-ai-tasks:latest"
]
}
}
}
Docker SSE Transport
{
"mcpServers": {
"valkey-tasks": {
"serverUrl": "http://valkey-mcp-server:8080/sse"
}
}
}
Available Tools
| Tool | Description |
|---|---|
create_plan |
Create a new plan |
get_plan |
Get a plan by ID |
list_plans |
List all plans |
list_plans_by_application |
List all plans for a specific application |
update_plan |
Update an existing plan |
delete_plan |
Delete a plan by ID |
update_plan_notes |
Update plan notes |
get_plan_notes |
Get plan notes |
create_task |
Create a new task in a plan |
get_task |
Get a task by ID |
list_tasks_by_plan |
List all tasks in a plan |
list_tasks_by_status |
List all tasks with a specific status |
update_task |
Update an existing task |
delete_task |
Delete a task by ID |
reorder_task |
Change the order of a task in a plan |
Features
- Plan management (create, read, update, delete)
- Task management (create, read, update, delete)
- Task ordering and prioritization
- Task status tracking
- Markdown-formatted notes support for plans and tasks
- MCP server for AI agent integration
- STDIO, SSE, and Streamable HTTP transport protocol support
- Docker container for easy deployment
- MCP resources for efficient data access
- Bulk task creation in a single operation
Environment Variables
Optional
ENABLE_SSE— Enable Server-Sent Events transportENABLE_STREAMABLE_HTTP— Enable Streamable HTTP transportENABLE_STDIO— Enable STDIO transport for direct process communication
Usage Examples
I need to organize work for my new application called "inventory-manager". Create a plan for this application with plan notes about creating a comprehensive inventory management system, and add tasks for setting up database schema, implementing REST API endpoints, creating user authentication, designing frontend dashboard, and implementing inventory tracking features.
Notes
The system provides MCP resources for efficient data access with URI patterns like 'ai-tasks://plans/{id}/full' for viewing full plan details. The notes functionality supports full Markdown: headings, lists, tables, code blocks, links, and images. The server automatically selects the transport based on URL path and content type.
